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Direct numerical simulations of the motion of 27 three-dimensional deformable
buoyant bubbles in periodic domains are presented. The full Navier–Stokes equations
are solved by a parallelized finite-difference/front-tracking method that allows a
deformable interface between the bubbles and the suspending fluid and the inclusion
of surface tension. The Eötvös number is taken as equal to 5, so that the bubbles
are ellipsoidal, and the Galileo number is 900, so that the rise Reynolds number of
a single bubble in an unbounded flow is about 26. Three values of the void fraction
have been investigated: 2%, 6% and 12%. At 6%, a change in the behaviour of the
bubbles is observed. The bubbles are initially dispersed homogeneously throughout
the flow field and their average rise Reynolds number is 23. After the bubbles have
risen by about 90 bubble diameters, they form a vertical stream and accelerate. The
microstructure of the bubble suspension is analysed and an explanation is proposed
for the formation of these streams. The results for the ellipsoidal bubbles are compared
to the results for nearly spherical bubbles, for which the Eötvös number is 1 and the
Galileo number is 900. The dispersion of the bubbles and the velocity fluctuations in
the liquid phase are analysed.

1. Introduction
Bubbly flows are of critical importance in many industrial processes, such as boiling

heat transfer, cloud cavitation in hydraulic systems, stirring of reactors, aeration in
water purification, bubble columns and centrifuges in the petrochemical industry,
cooling devices of nuclear reactors, and scavenging of dissolved gases in separation
processes. Bubbles also play a major role in a number of natural phenomena, such as
the propagation of sound in the ocean, the exchange of gases and heat between the
oceans and the atmosphere, and explosive volcanic eruptions.

Engineering predictions of bubbly flows have traditionally relied on correlations
of bulk properties such as the mean pressure drop, the mean flow rate, or the
mean wall shear stress, which are obtained from simple scaling arguments and
experimental measurements (Hetsroni 1982). The knowledge of such correlations is
often sufficient for one-dimensional problems such as pipe flows. However, a more
detailed knowledge of the flow field is required to predict the motion of the bubbles
and the liquid in complex three-dimensional problems such as bubble columns or
stirred tanks. Direct numerical simulations, where all flow scales are fully resolved,
provide a complete picture of the flow field. While they have had a major impact on
the current understanding of turbulence in single-phase flows, numerical difficulties
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have until recently limited similar progress in multiphase flows. The main difficulties
are to simulate the motion of a deformable interface and to account for the proper
stress boundary conditions at the interface.

A number of authors have simulated the motion of a single bubble, usually with
grids fitted to the bubble interface. For example, Ryskin & Leal (1984) computed the
steady-state shape of a single clean axisymmetric bubble; McLaughlin (1996) extended
that study to a contaminated bubble. Takagi & Matsumoto (1994), Miyata (1996) and
Oka & Ishii (1999) performed unsteady three-dimensional simulations of the motion
of a deformable bubble. The motion of a single bubble has also been addressed in a
large number of experimental and analytical studies and is now fairly well understood
(see Clift, Grace & Weber 1978; Fan & Tsuchiya 1990; Sadhal, Ayyaswamy & Chung
1997 for reviews).

For multiple bubbles, the literature is much more limited. Some progress has been
achieved by the use of simplified models. Boundary-integral techniques were used in
the Stokes flow limit by Manga & Stone (1993) for gas bubbles in very viscous liquids
and in the inviscid limit by Chahine (1994) for cavitating bubbles. Using the results of
Moore (1965), who showed that the flow around a spherical bubble at high Reynolds
number can be considered inviscid and irrotational except in a thin boundary layer
and wake, Smereka (1993), Sangani & Didwania (1993) and Yurkovetsky & Brady
(1996) developed techniques to simulate the motion of large numbers of spherical
bubbles in the potential flow limit. These authors found that the velocities of the
bubbles become equal over time and that the bubbles form horizontal rafts as they rise.
The discrepancy between these findings and experimental observations, probably due
to the absence of wakes in the simulations, has led workers to question the appro-
priateness of the potential flow assumption in dynamic simulations of bubbly liquids.
Another common simplification is to assume that the bubbles can be represented as
point particles (see, for example, Spelt & Biesheuvel 1997). Semi-empirical relations
must be prescribed for the forces exerted by the liquid on the bubbles and these
relations are only applicable in a limited region of the parameter space. In addition,
direct bubble/bubble interactions are not accounted for, so that the simulations are
restricted to low void fractions.

A number of methods have been developed in the past twenty years to perform
direct numerical simulations of multiphase flows at finite Reynolds numbers, where
inertia, viscosity, interface deformation, and surface-tension effects are all included. A
review of these methods is given in Tryggvason et al. (2001). Hu (1996) and Johnson &
Tezduyar (1997) used unstructured moving-grid techniques to simulate up to 1000 solid
particles; the flow field must be remeshed at every time step to follow the motion of
the particle boundaries. Simulations of fluid particles, i.e. bubbles and drops, usually
rely on one-field formulations, where a single Navier–Stokes equation is solved in the
entire flow field on a stationary grid and the front, or interface between the fluids, is
either captured or tracked. The advantages of a one-field formulation over a moving
grid are reduced computational cost and increased facility to model complex geo-
metries and topologies. We note that a one-field approach was adopted by Glowinski
et al. (1999) to simulate 504 solid particles in two dimensions. The volume-of-fluid
and level set methods are examples of front-capturing methods. In the volume-of-fluid
method (see Scardovelli & Zaleski 1999, for a review), a marker function is advected
with the velocity of the flow field and the front is reconstructed at each time step from
this marker function. In the level set method (Sussman & Smereka 1997), a distance
function is advected with the velocity of the flow field and the front is defined as the
surface where the distance function is zero. The main challenge in front-capturing
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methods is to prevent two bubbles or drops from ‘numerically coalescing’ when their
distance becomes less than one grid step. The numerical method used in this paper
is a front-tracking method, where the interface is tracked explictly by a moving
deformable mesh, which makes it possible to keep the bubbles separate even when
they are very close.

Esmaeeli & Tryggvason (1996, 1998, 1999) used this method to simulate the motion
of homogeneous bubbly flows in periodic cells. Most of the results were confined to
two-dimensional systems, but a few simulations of three-dimensional systems with up
to eight bubbles were also examined. Using an implementation of the same method
on parallel computers, Bunner & Tryggvason (1999a; 2002a, b) simulated the motion
of up to 216 nearly spherical bubbles in a three dimensional periodic cell. Bunner &
Tryggvason (2002a) studied the dependence of the results on the number of bubbles. It
was found that the rise velocity is predicted well by systems containing relatively few
bubbles, but the fluctuation velocities and the dispersion coefficients depend strongly
on the number of bubbles in the periodic cell. An analysis of the microstructure in
Bunner & Tryggvason (2002a) showed a preference for an horizontal alignment of
pairs of spherical bubbles. The hydrodynamic dispersion of the bubbles was found
to be Gaussian to a good approximation, with strongly anisotropic diffusion coeffi-
cients. In the densest case, at a void fraction of 24%, the formation of horizontal
rafts of bubbles, which periodically break up and reform, was observed. Bunner &
Tryggvason (2002b) found that the velocity fluctuations induced in the liquid by
the bubble motion increased with the void fraction, and that the isotropic kinetic
energy spectrum followed a power law with a slope of approximately −3.6 at high
wavenumbers.

In this paper, we present results from simulations of strongly deformable bubbles in
homogeneous flows. Whereas previous numerical studies of bubbly flows dealt almost
exclusively with nearly spherical bubbles, flows encountered in industrial applications
or in nature are often composed of strongly deformed bubbles. For a given gas and
a given liquid, deformation depends on the size of the bubble (Clift et al. 1978).
For example, a clean air bubble in water is approximately spherical if its equivalent
diameter is smaller than 2 mm. As the diameter increases, the bubble progressively
deforms into an ellipsoid, and eventually adopts a spherical cap shape. The rise
velocity increases with the diameter, although not uniformly. For example, the rise
velocity actually decreases when the bubble becomes large enough that path instability
sets in. In this paper, we chose the same parameters for the ellipsoidal bubbles as
for the spherical bubbles, the only difference being the surface tension, which is five
times lower for ellipsoidal bubbles than it is for spherical bubbles. The simulations
correspond therefore to a different combination of gas and liquid. There are two
reasons for this choice. First, the current numerical scheme and the currently available
computer resources make it difficult to do large-scale three-dimensional simulations
at high Reynolds numbers. Secondly, as a result of our choice of parameters, the rise
velocities of the spherical and ellipsoidal bubbles are approximately the same, which
allows us to make easier comparisons between the results for the spherical bubbles
and the results for the ellipsoidal bubbles.

The main motivation for this paper is the numerical study of the rise of a deformable
bubble in a vertical shear flow by Ervin & Tryggvason (1997). In agreement with
the experiments of Kariyasaki (1987), Ervin & Tryggvason (1997) found that the lift
coefficient depends strongly on the deformation of the bubble. Specifically, whereas
the lift coefficient of a spherical bubble is positive, the lift coefficient of a strongly
deformed bubble is negative. In a vertical shear flow, a spherical bubble migrates
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therefore towards the region of downward velocity, while a deformable bubble
migrates towards the region of upward velocity. The same results were obtained
numerically and experimentally by Tomiyama et al. (1995).

Another motivation for this paper is the experiments of Stewart (1995), Schlüter &
Räbiger (1998), Brücker (1999a, b) and Sommerfeld (personal communication 1999).
Using recently developed measurement techniques, these authors measured the paths
of many large, strongly deformed bubbles moving in a cluster or swarm. In a
cluster of a few bubbles, Brücker (1999a) observed that the bubbles interact by
wake drafting and continually trade places in a leapfrog fashion. If the cluster has
a large number of bubbles, Stewart (1995) observed that the bubbles ‘formed a
chimney in which a cluster’s wake was strong enough to sustain itself by continually
gathering in new bubbles to replace those that dispersed outward at the top.’
As noted by Schlüter & Räbiger (1998), the resulting mean rise velocity of the
bubbles in the cluster is considerably larger than the rise velocity of a single bubble.
This contrasts with experimental correlations (Ishii & Zuber 1979) and analytical
studies (van Wijngaarden 1993), which both predict that the mean rise velocity of the
bubbles decreases monotonically as the void fraction increases.

The paper is organized in the following manner. Section 2 states the problem and
§ 3 describes the numerical method. The formation of a stream and the microstructure
of the flow are analysed in § 4.1 for the case where the void fraction is 6%. The results
for the ellipsoidal bubbles are compared with the results for spherical bubbles. The
effect of void fraction is described in § 4.2, with simulations at void fractions of 2%
and 12%. The deformation and orientation of the bubbles are examined in § 4.3.
The dispersion process of the bubbles is characterized in § 4.4. The pseudoturbulence
properties of the liquid phase are analysed in § 4.5. Finally, the effect of initial
conditions is discussed in § 4.6.

2. Problem statement
We consider the three-dimensional motion of a triply periodic monodisperse array

of buoyant bubbles with equivalent diameter d or radius a, density ρb, viscosity µb

and uniform surface tension σ in a fluid with density ρf and viscosity µf . The array
of bubbles is repeated periodically in the three spatial directions with periods equal
to L, so that the volume of the computational domain is Ω = L3. In addition to the
acceleration due to gravity, g, a uniform acceleration is imposed on the fluid inside
and outside the bubbles to compensate for the hydrostatic head, so that the net
momentum flux through the boundaries of the computational domain is zero.

A single bubble of light fluid rising in an unbounded flow is usually described by
the Eötvös number (sometimes also called the Bond number), Eo = ρf gd2/σ and the
Morton number, M = gµf

4/ρf σ 3 (see Clift et al. 1978). For given fluids, the Eötvös
number is a characteristic of the bubble size and the Morton number is a constant.
Instead of the Morton number, we prefer to use the Galileo or Archimedes number,
N = ρ2gd3/µ2 = Eo3/2/M1/2, which is a Reynolds number squared based on the
velocity scale (gd)1/2. In this paper, we choose Eo = 5 and N = 900 (M = 1.543 × 10−4).
This Morton number corresponds to a light machine oil at a temperature of about
50 ◦C (µf = 0.0247 N s m−2, ρf = 880 kg m−3, σ =0.03 Nm−1 and g =9.81 m s−2) and
the Eötvös number corresponds to a bubble with a diameter of about 4.2 mm. For
the somewhat more interesting case of an air bubble in water, the Galileo number
is usually much higher, but current computational capabilities make the study of
a three-dimensional system of multiple bubbles in water difficult. An air bubble in
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water with Eo = 5 assumes an ellipsoidal shape with a ratio of large axis length over
small axis length of about 2.2 in a pure system according to the Vakrushev and
Efremov correlation (Fan & Tsuchiya 1990), and a rise Reynolds number of about
1500 (Clift et al. 1978, chap. 7). For comparison, the corresponding values in an
impure system are 1.3 and 1150 (Clift et al. 1978, chap. 7). Such bubbles exhibit a
complex unsteady motion characterized by wobbling and rocking, vortex shedding,
and shape oscillations (Lunde & Perkins 1998). In contrast, for Eo = 5 and N = 900,
a single bubble follows a steady rectilinear motion. From the results of numerical
simulations of Ryskin & Leal (1984), its rise Reynolds number can be estimated
to be 26.3 ± 2 and its ratio of major axis length to minor axis length is 1.6 ± 0.2.
This is consistent with the crude estimate that can be obtained from correlations of
experimental data, which is Re = 27.3 (Clift et al. 1978, p. 176).

The fluids are taken to be free of contaminants in the simulations, so that the
tangential stress is continuous across the interface. The ratios of the densities and
viscosities, ρb/ρf and µb/µf , are two additional dimensionless parameters. These
ratios are very small in most bubbly flows. (The density ratio for air bubbles in water
is 1/800 for example.) For computational reasons, the simulations were performed at
a higher value, ρb/ρf =µb/µf = 1/50. Jan (1994), Bunner & Tryggvason (2002a) and
Oka & Ishii (1999) showed that this leads to negligible differences in the results.

At the initial time, the Nb bubbles are placed inside the periodic cell corresponding
to the computational domain and arranged in a regular array. The position of each
bubble is then perturbed slightly in each direction by a random amount chosen so that
neighbouring bubbles do not intersect. The initial location of the bubbles can thus be
described as a perturbed regular array. For spherical bubbles, Bunner & Tryggvason
(2002a) showed that the initial configuration of the bubbles has no effect on the
steady-state results. In contrast, it will be seen in § 4.6 that the initial configuration of
the ellipsoidal bubbles has a considerable effect on the evolution of the flow.

As they rise, the bubbles move into the other periodic cells in the vertical direction
through buoyancy and in the horizontal direction through dispersion. The bubbles are
not allowed to coalesce, so that Nb is constant. A fifth dimensionless parameter of this
problem is the void fraction, or volume fraction of the bubbly phase, α = Nbπd3/6L3.
Since both fluids are assumed to be incompressible, α is constant throughout a
simulation. The number of bubbles, Nb, is an additional parameter. Because of
computational cost, only simulations with Nb = 27 were performed. A study of system
size effects for spherical bubbles (Bunner & Tryggvason 2002a) showed that the
average rise velocity of the bubbles depends only slightly on Nb for Nb � 12, while the
velocity fluctuations of the bubbles and the liquid are more strongly affected by Nb.

Following Ishii & Zuber (1979), the drift velocity is used to present the results of
the bubble velocities in the vertical direction. The drift velocity of bubble l is defined
as the volume averaged velocity of bubble l minus the volume averaged velocity of the
whole mixture: W

(l)
d (t) = W

(l)
b (t) − [αWb(t) + (1 − α)Wf (t)]. In this definition, W

(l)
b (t) is

calculated by taking the time derivative of the path of the barycentre of bubble l

(Bunner & Tryggvason 2002a), Wb(t) is the average value of W
(l)
b (t) over all bubbles,

and Wf (t) is the average velocity of the liquid,

Wf (t) =
1

Ω f

∫
Ωf

w(t) dV,

where Ωf = (1 − α)Ω = (1 − α)L3 is the volume of the liquid and w(t) is the vertical
velocity of a liquid particle. The average drift velocity satisfies Wd(t) = (1 − α)Wr (t),
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where Wr (t) = Wb(t) − Wf (t) is the relative or slip velocity between the gas phase
and the liquid phase. We define the instantaneous velocity fluctuation in the vertical
direction based on the instantaneous velocity fluctuation of the barycentre as

W ′
b(t) =

[
1

Nb

∑
l=1,Nb

(
W

(l)
b (t) − Wb(t)

)2

]1/2

,

and the time averaged velocity fluctuation in the vertical direction as

〈W ′
b〉 =

1

T

∫
T

W ′
b(t) dt,

where T is the time interval defined in table 1. An alternative choice of definition for
W ′

b(t) would be to use the time-averaged velocity of bubble l,[
1

Nb

∑
l=1,Nb

(
W

(l)
b (t) −

〈
W

(l)
b

〉)2

]1/2

,

where 〈W (l)
b 〉 = 1

T

∫
T

W
(l)
b (t) dt . The two definitions lead to values of the time-averaged

velocity fluctuations that are within approximately 1% of each other in simulations
that are statistically steady state, but the former definition is more appropriate in
situations where the motion of the bubbles is not statistically steady throughout
the simulations, as is the case for the deformable bubbles in some cases.† Similar
formulae are used to define the horizontal velocity fluctuations U ′

b(t), V ′
b(t) and their

time averages 〈U ′
b〉 and 〈V ′

b〉. Furthermore, the average values of the horizontal, or
cross-stream, and the total bubble velocity fluctuations are defined as

〈(
U ′2

b + V ′2
b

)1/2〉
=

1

T

∫
T

(
U ′2

b (t) + V ′2
b (t)

)1/2
dt

and 〈(
U ′2

b + V ′2
b + W ′2

b

)1/2〉
=

1

T

∫
T

(
U ′2

b (t) + V ′2
b (t) + W ′2

b (t)
)1/2

dt,

respectively. The bubble velocities and velocity fluctuations are presented as Reynolds
numbers, using the nominal bubble diameter d as length scale and the density ρf and
viscosity µf of the liquid. For example, the drift Reynolds number is Red = ρf Wdd/µf

and the vertical fluctuation Reynolds number is Rew′ = ρf W ′
bd/µf . Their time averages

are denoted by 〈Red〉 = ρf 〈Wd〉d/µf and 〈Rew′ 〉 = ρf 〈W ′
b〉d/µf .

The Reynolds stresses of the liquid phase are defined as

(u′
iu

′
j )(t) =

1

Ωf

∫
Ωf

u′
i(t)v

′
j (t) dV.

Here, u′
i(t) stands for any of the velocity fluctuations of the liquid in the three spatial

directions, u′(t), v′(t) or w′(t), and (u′
iu

′
j )(t) stands for any of the nine components

of the Reynolds stress tensor. The time-averaged horizontal and vertical Reynolds

† Note that the results for the time-averaged velocity fluctuations presented in Bunner &
Tryggvason (2002a) were calculated with the formula shown above, not with the definition shown
in equation 2.16 of that paper. The two definitions lead to values that differ by less than 2% for
number of bubbles greater than 27.
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stresses are

〈u′u′ + v′v′〉 =
1

T

∫
T

((u′u′)(t) + (v′v′)(t)) dt

and

〈w′w′〉 =
1

T

∫
T

(w′w′)(t) dt.

The pseudoturbulent kinetic energy is defined as KE =(u′u′ + v′v′ + w′w′)/2.

3. Numerical method
The fluids inside and outside of the bubbles are taken to be Newtonian and the flow

is taken to be incompressible and isothermal, so that the densities and viscosities are
constant within each phase. The numerical method is based on solving the Navier–
Stokes equation for the entire computational domain using a single grid and tracking
the bubble surface by connected marker points. The basic numerical method, which
is best described as a finite-difference/front-tracking method, is described in detail in
Unverdi & Tryggvason (1992) and Tryggvason et al. (2001). Improvements to the basic
method include the development of a numerical technique to conserve volume and
parallelization of the code. The incompressibility condition results in a non-separable
elliptic equation for the pressure, for which a multigrid solver was developed.

The numerical method has been validated in various ways (see Jan 1994; Esmaeeli &
Tryggvason 1998). Extensive grid independence studies were reported in Bunner &
Tryggvason (2002a) for spherical bubbles rising with approximately the same velocity
as found here and were used as guidelines for the simulations of deformable bubbles.
The results presented here are the bubble rise velocity Wb, the bubble velocity
fluctuations U ′

b, V ′
b , W ′

b, the liquid velocity fluctuations, u′u′, v′v′, w′w′, and quantities
derived from these three basic types. A grid independence study was performed for
the bubble rise velocity and for the liquid velocity fluctuations. Bunner & Tryggvason
(2002a) showed that the bubble velocity fluctuations are significantly less dependent
on the grid resolution than the bubble rise velocity and the liquid velocity fluctuations,
so no grid independence study was performed for the bubble velocity fluctuations in
this paper.

The accuracy of the method is determined by the number of grid points across the
nominal diameter of the bubble, nd . For the parameters selected in this paper, Eo=5
and N = 900, a resolution of at least 20.7 points per bubble diameter was adopted.
A grid independence study was performed for a single bubble in a periodic domain
at α =6% and nd = 10.7, 20.4, 31.1 and 38.9. The plot of the drift Reynolds number
and the pseudoturbulent kinetic energy of the liquid phase in figure 1 shows that
the motion of the bubbles is steady after an initial transient and that a resolution
of nd = 38.9 leads to a solution that is essentially grid independent. The error made
in using nd = 20.7 instead of nd = 38.9 is 2.0% for the terminal rise velocity WT ,
2.9% for the relaxation time of the rise velocity, defined as

∫
(1 − Wb(t)/WT ) dt , 1.1%

for the pseudoturbulent kinetic energy of the liquid phase, and 1.5% for the bubble
deformation, defined by the ratio of major axis length over minor axis length.

While the interaction of bubbles in the range of void fractions considered in this
paper is likely to lead to coalescence in some circumstances (Stewart 1995; Katz &
Meneveau 1996; Duineveld 1998), we do not allow the bubbles to merge, so that
statistics can be obtained for a constant number of bubbles. Although no grid refine-
ment was done when two bubbles become close to each other, it has been shown by



84 B. Bunner and G. Tryggvason

0

5

10

15

20

25

30

5 10 15 20 25

(a)

38.9 points per diameter
31.1
20.4

10.7

Red

0

0.05

5 10 15 20 25

(b)

0.04

0.03

0.02

0.01

dg

k

t√(g/d )

Figure 1. Resolution test for a regular array with Eo= 5, N =900, α = 6%. (a) Drift
velocity; (b) pseudoturbulent kinetic energy in the continuous phase.

Qian (1997) that our numerical method accurately accounts for the draining of the
fluid film between two colliding drops, as long as the interface is fully mobile and not
affected by surfactants.

4. Results
The results for deformable bubbles with Eötvös number Eo = 5 are compared with

results from simulations with nearly spherical bubbles at Eo = 1 in order to highlight
the strong effect of deformation on the interaction of the bubbles. The latter case
has been presented in Bunner & Tryggvason (2002a, b), where results for systems
with Nb = 91 and 216 were also included in order to study the effect of system size.
For simplicity, we refer to Eo =5 bubbles as either ‘deformable’ or ‘ellipsoidal’ and
to Eo =1 bubbles as ‘spherical’ in the rest of the paper, even though the latter also
experience a small amount of deformation, characterized by a ratio of major axis
length over minor axis length of about 1.08. Eo = 1 was selected rather than a smaller
value of Eo because of numerical considerations. It is shown in Bunner & Tryggvason
(2002a) that the motion of bubbles at Eo =1 is not significantly different from that



Effect of bubble deformation on the properties of bubbly flows 85

α (%) Eo L/d nx nd Tf (g/d)1/2 Ti(g/d)1/2 zb/d zb/L nstep CPU

2 1 8.91 192 21.6 245 60 217 24.4 60720 80
2 5 8.91 192 21.6 191 40 157 19.0 49081 81
6 1 6.18 128 20.7 257 30 183 28.7 58990 79
6 5 6.18 128 20.7 184 25 179 29.0 72881 63

12 1 4.90 104 21.2 200 30 119 24.2 47710 78
12 5 4.90 104 21.2 193 30 128 26.5 69651 109

Table 1. List of simulations, computational parameters, and timings. L is the length of the
sides of the cubic periodic domain. nx = ny = nz is the number of grid points in each spatial
direction. nd is the number of grid points per bubble diameter. Tf is the time at which the
simulation was stopped. For all cases except α = 6%,Eo= 5, the motion of the bubbles is
statistically steady and the mean values are calculated over the [Ti, Tf ] time interval. Ti is
chosen in such a way that the initial transients are avoided. For α = 6%, Eo= 5, the mean
values are calculated over the [25, 90] time interval; after t(g/d)1/2 ≈ 90, the motion of the
system becomes unsteady. zb is the average distance travelled by the bubbles in the vertical
direction. nstep is the number of time steps. CPU is the run time in days. All simulations used
eight processors of an IBM SP2.

of bubbles at Eo =0.1. Table 1 contains a summary of the simulations reported in
this paper, along with the principal computational parameters. The simulations were
performed on IBM SP2 machines at the University of Michigan’s Center for Parallel
Computing and at the Maui High Performance Computing Center. Generally, only
one simulation was performed for each value of Eo and α. For Eo = 1, α = 6%,
several simulations with different numbers of bubbles Nb and different sizes of the
periodic computational domain L are reported in Bunner & Tryggvason (2002a). As
mentioned in § 2, the steady-state results for Eo = 1 are not affected by the initial
conditions, although they are dependent on Nb, which prompted us to consider in this
paper only simulations with the same number of bubbles, Nb = 27. For α = 2%, the
effect of the initial conditions is examined in § 4.6; only one simulation is considered
prior to that for Eo = 1 and Eo= 5 each. It will be seen in § 4.6 that initial conditions
have an important effect on the development of the flow for Eo = 5 but not for Eo= 1,
past an initial transient.

4.1. Streaming of deformable bubbles

This subsection focuses on the results of the two simulations with α =6%. The drift
Reynolds numbers of the 27 ellipsoidal bubbles are shown in figure 2(a). The velocity
of the bubbles and the liquid is initially zero. After the bubbles are released, they
experience a short transient phase where they accelerate while maintaining a nearly
regular array configuration. Unlike the potential flow simulations of Smereka (1993),
Sangani & Didwania (1993), and Yurkovetsky & Brady (1996), the velocities of the
individual bubbles never equalize. Owing to the continual interaction of the bubbles,
the rise velocities fluctuate throughout the simulations. The average drift Reynolds
number of the α = 6% system is shown in figure 2(b). For the spherical bubbles,
Red(t) reaches a well-defined statistical steady state after the initial transient peak. It
is determined over the [30, 257] time interval and is equal to 21.95. The motion of
the ellipsoidal bubbles likewise settles to a statistical steady state until t(g/d)1/2 ≈ 90,
with an average drift Reynolds number of 21.50 over the [25, 90] time interval. After
this time, however, the drift Reynolds number increases steadily until t(g/d)1/2 = 184,
where it reaches a value of about 50. The simulation was stopped at this time because
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Figure 2. (a) Drift Reynolds number of the 27 bubbles for α = 6%, Eo= 5. (b) Average drift
Reynolds number versus time for the ellipsoidal bubbles (Eo= 5) and the nearly spherical
bubbles (Eo=1).

of two numerical problems: insufficient resolution at this Reynolds number and very
small time steps due to the centred finite-difference scheme. It was therefore not
possible to determine the maximum value that Red(t) would reach.

The configuration of the 27 bubbles is shown in figure 3 at t =88, 128 and
177 for Eo = 5 and at t = 129 for Eo = 1. The streamlines and the contours of the
enstrophy, ‖ω‖2

/2, where ω = ∇ × u, are superposed in a vertical plane cross-section.
The streamlines are calculated by distributing tracer particles in a plane section and
integrating their motion with the velocity using the AVS visualization software. The
number of tracer particles does not correspond to the number of grid points. At
the early stage of the motion, the ellipsoidal bubbles are distributed approximately
uniformly through the periodic cell, like the spherical bubbles, and are oriented such
that their major axis is horizontal. The vorticity is larger for deformable bubbles than
for spherical bubbles, since the vorticity generated at a free interface is proportional
to the curvature (Batchelor 1967, § 5.14). In agreement with the results of Blanco &
Magnaudet (1995), no standing eddy or recirculation zone is observed behind the
bubbles in this range of Reynolds number and deformation. As the rise velocity of the
ellipsoidal bubbles starts increasing, a change in the structure of the flow field and in
the distribution of the bubbles is seen in figure 3. The bubbles start forming a vertical
stream centred around the vertical edges of the periodic domain. The location of the
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(a) (b)

(c) (d )

Figure 3. The 27 bubbles with (a) Eo= 5 at t(g/d)1/2 = 88, (b) 128, (c) 177, and (d) the 27

bubbles with Eo= 1 at t(g/d)1/2 = 128. Contours of the enstrophy, ‖ω‖2
/2, where ω = ∇ × U ,

and streamlines in a plane cross-section are shown. The bubbles that are shaded lie behind
the plane of the cross-section. Red and blue correspond to regions of high and low vorticity,
respectively.

stream at the edges of the computational domain is not due to issues of numerical
boundary conditions, as suggested by the fact that a stream also forms in the centre
of the domain in § 4.6. In figure 3(c), the centre of the computational domain is nearly
void of bubbles. To compensate for the upward momentum of the bubbles and the
liquid entrained by the bubbles, the velocity of the liquid in the centre of the domain
is downward. The few bubbles located in this region are therefore slowed down and
may even have negative vertical velocities (see figure 2a). Because of the larger mean
rise velocity, the deformation of the bubbles increases, as discussed below in § 4.3.
Their shape becomes asymmetric, similar to the distorted elliptical shape seen in the
deformation of a single bubble in a vertical shear flow (Ervin & Tryggvason 1997)
and in the experiments of Schlüter & Räbiger (1998). In addition, the vorticity of the
liquid surrounding the bubbles increases considerably.

Ervin & Tryggvason (1997) studied the motion of a single bubble in a vertical
linear shear flow and found that the lift coefficient of a bubble becomes negative



88 B. Bunner and G. Tryggvason

Figure 4. Schematic representation of a spherical and deformable bubble in the wake of
another bubble. The arrows represent the direction of the lift force acting on the trailing
bubble due to the local shear induced by the leading bubble. The deformable bubble moves
into the wake, the spherical bubble moves away from the wake.

when the bubble deforms strongly. This provides an explanation for the streaming
phenomenon, illustrated schematically in figure 4. Consider a bubble moving in the
wake of one or more other bubbles. The flow field surrounding the trailing bubble
has a local velocity gradient. Owing to this local shear region and the resulting lift,
a spherical bubble tends to move away from the wake, whereas a deformable bubble
tends to move into the wake, thus reinforcing the stream. This mechanism provides
an interpretation for the qualitative differences observed between the motion of the
spherical and deformable bubbles, but it does not account for the entire range of
possible interactions. For example, wake effects result in the attraction of two in-line
spherical bubbles if they are separated by a large distance, as was shown by Yuan &
Prosperetti (1994) and as is discussed below in more details.

An increase in the rise velocity due to the interactions between deformable bubbles
has also been seen in experiments (Stewart 1995; Schlüter & Räbiger 1998; Brücker
1999a; Sommerfeld, personal communication 1999). In particular, Schlüter & Räbiger
(1998) found that the rise velocity of 4 mm diameter air bubbles in a ‘swarm’ of
bubbles was 40% higher than the rise velocity of a single bubble in an unbounded
domain. They also found that the bubbles in a swarm are more deformed than single
bubbles, that their shape is asymmetric with pointed ends, and that their orientation
in the swarm is such that their major axis is not horizontal. These observations are
consistent with figure 3 and with § 4.3.

In order to understand the microstructure of the bubble suspension, we determine
the pair distribution function, which is an indicator of the probability that the distance
between the centroids of two bubbles is r and that the angle between the line joining
the centroids and the vertical axis is θ . More precisely, referring to figure 5 and to the
notations in the caption, we consider two bubbles of centroids O and P and define
the distance R and the angle Θ such that OP = Rer = ρeρ + zez and Θ = tan−1(ρ/z).
We then define the radial pair distribution function as

G(r) =
Ω

Nb(Nb − 1)

1

�V (r)

∑
i=1,Nb

∑
j=1,Nb

i 	=j

δ
(
r − 1

2
�r � R < r + 1

2
�r

)
, (4.1)

where Ω =L3 is the volume of the periodic cell, �V (r) = (4π/3)[(r + �r/2)3 −
(r − �r/2)3] is the volume of the spherical shell of inner radius r − �r/2 and outer
radius r + �r/2, and δ(x) is equal to one if the statement x is true and zero otherwise.
In a uniform distribution of Nb points, it can be verified that G(r) = 1 for any value
of r . Because of the finite size of bubbles, G(r) = 0 for r < 2a if the bubbles do not
deform. G(r) < 1 (resp. G(r) > 1) indicates a lower (resp. higher) likelihood of two
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Figure 5. Definition of the separation vector r ij = OP , distance r , and angle θ between
bubbles i and j , and of the unit vectors eρ = ex cosφ + ey sin φ, er = eρ sin θ + ez cos θ , and
eθ = eρ cos θ − ez sin θ .
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Figure 6. Radial pair distribution function for α = 6%, for the ellipsoidal bubbles (Eo=5) in
the non-streaming phase (t(g/d)1/2 ∈ [25, 90] and in the streaming phase (t(g/d)1/2 ∈ [100, 180])
and for the nearly spherical bubbles (Eo=1). The smallest non-zero values of G(r) occur at
r = 0.8a for Eo= 5 and r = 1.8a for Eo= 1. The horizontal axis is discretized into 40 �r
intervals. For Eo= 5, the results were averaged over 300 evenly spaced time samples in [25, 90]
(non-streaming) and 300 time samples in [100, 180] (streaming). 1000 time samples were used
for Eo= 1.

bubbles being separated by a distance r compared to a uniform distribution. The
data is averaged over a large number of samples in the [Ti, Tf ] time intervals.

The radial pair distribution is shown in figure 6 for the deformable bubbles in
the non-streaming phase (t(g/d)1/2 ∈ [25, 90]) and in the streaming phase (t(g/d)1/2 ∈
[100, 180]), and for the spherical bubbles (t(g/d)1/2 ∈ [30, 257]). It is important to
point out that the data for Eo = 5 and t(g/d)1/2 ∈ [100, 180] represents unsteady,
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not steady-state, results, that are only averaged for convenience of presentation. We
verified that the results do not change significantly when �r is multiplied or divided
by two (although the noise in the data increases when �r becomes very small because
of the finite number of samples), or when the number of time samples is increased
or decreased by a factor of two. More detailed sensitivity tests are reported for
spherical bubbles in Bunner & Tryggvason (2002a). Beside grid convergence or grid
independence, it is also important to verify that the results are not affected by the
limited size of the periodic domain. The effect of the number of bubbles on G(r)
and Gr (θ) was examined in Bunner & Tryggvason (2002a). While a small effect was
observed, it is not sufficient to significantly alter the microstructure results, at least
when the motion of the bubbles is statistically steady. When the bubbles are streaming,
we are not in a position to evaluate the effect of system size on the microstructure
results and on the time, at which streaming sets in.

For the spherical bubbles, a peak close to r = 2a is observed, similar to corres-
ponding results for spherical particles (Bossis & Brady 1984). Owing to the small
deformation at Eo= 1, G(r) is essentially zero for r < 2a. In contrast, because of
the large deformation for Eo = 5, G(r) > 0 for r > 0.8a. In the non-streaming phase,
G(r) has only a small peak for the deformable bubbles and G(r) → 1 as r increases,
suggesting that the motion of two bubbles at large distances is uncorrelated and
that the bubbles are uniformly distributed. In the streaming phase, the peak is much
larger and G(r) < 1 for r > 6a, which is consistent with the fact that the bubbles are
gathered in a vertical column. The non-zero values of Gr for r < 2a shows that the
bubbles have deformed significantly such that the minor axis is closer to a than 2a.
An inspection of figure 3 suggests that these results for r < a correspond to in-line
collision of the bubbles.

For a given value of r , we also define the angular pair distribution function as

Gr (θ) =
Ω

Nb(Nb − 1)

1

�V (θ)

∑
i=1,Nb

∑
j=1,Nb

i 	=j

δ
(
θ − 1

2
�θ � Θ < θ + 1

2
�θ; R < r

)
, (4.2)

where �V (θ) = (2πr3/3)[cos(θ − �θ/2) − cos(θ + �θ/2)] is the volume of the angular
sector of radius r contained within the angles θ − �θ/2 and θ + �θ/2. In a uniform
distribution of Nb points, it can be verified that Gr (θ) = 1 for any value of θ and r .
However, because of the finite radius of the bubbles, Gr (θ) is small when r is small
and becomes larger as r increases. For example, in a uniform distribution of perfectly
spherical bubbles, we would have Gr (θ) = 0 for r < 2a and Gr (θ) = (r3 − (2a)3)/r3

for r > 2a. To correct for this ‘excluded-volume’ effect, Gr (θ) is normalized so that
Gr (θ) = 1 corresponds to a uniform distribution of bubbles and 1

2

∫ π

0
Gr (θ) sin θ dθ =1.

Like G(r), Gr (θ) is averaged over many time samples and sensitivity tests were
performed. Gr (θ) is shown in figure 7. For small values of r , Gr (θ) is indicative of the
alignment of close bubble pairs. For Eo = 5 and r = 2.5a, Gr (θ) exhibits peaks close to
θ = 0 (bubble P is ahead of the reference bubble O) and π (bubble P is behind
the reference bubble O), indicating that pairs of deformable bubbles tend to align
themselves vertically. This trend is more pronounced in the streaming phase than
in the non-streaming phase. For Eo = 1, the peak is at θ = π/2, indicating that pairs
of spherical bubbles tend to align themselves horizontally.

Additional understanding of the dynamics of the bubble interactions can be
obtained by looking at the relative velocity of bubble pairs. The relative velocity
of the bubble pair O , P is decomposed into its radial and tangential components
along er and eθ , Vr and Vθ . A simple quantitative description of the relative motion
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Figure 7. Angular pair distribution function Gr (θ ) versus θ for three different values of
the separation distance r . Results are shown for the ellipsoidal bubbles (Eo= 5) (a) in the
non-streaming phase by averaging over 300 time samples in the [25, 90] time interval and
(b) in the streaming phase by averaging over 300 time samples in the [100, 180] time interval.
The results for the Eo= 1 bubbles are averaged over 1000 time samples in the [30, 256] time
interval and are shown in (c). �, r = 2.5a; �, 4.0a; �, 8.0a.

of bubble pairs can be obtained by calculating the probability of Vr and Vθ being
positive as functions of θ . This is done for all bubble pairs separated by a distance
less than r , in the same manner as was done for Gr (θ). In a uniformly distributed
suspension, P (Vr > 0 | R < r) = 0.5 and P (Vθ > 0 | R < r) = 0.5.

P (Vr > 0 | R < r) is shown versus θ for different values of r in figure 8. The same
observations can be made for all cases. Two in-line bubbles tend to attract each other
(P (Vr > 0 | R < r) < 0.5 for θ close to 0 and π). Two side-by-side bubbles tend to
repel each other (P (Vr > 0 | R < r) > 0.5 for θ close to π/2). This repulsion is stronger
for deformable bubbles than for spherical bubbles at a given value of r . This can be
attributed both to the larger horizontal space occupied by deformable bubbles and
to the larger amount of vorticity generated at their surface.

In contrast, important differences can be seen in the plots of P (Vθ > 0 | R < r)
versus θ (figure 9) between the spherical and deformable bubbles. At θ ≈ 0, P (Vθ > 0 |
R < r) ≈ 1 for the spherical bubbles, indicating that, when two bubbles are aligned
vertically, they tend to rotate around each other toward a horizontal alignment. This is
consistent with the observation made from Gr (θ) that spherical bubbles tend to align
themselves horizontally with respect to their neighbours. It is also consistent with the
study by Harper (1970) of two spherical bubbles rising in a vertical line in the absence
of surface contamination and at high Reynolds number. Harper found that the two
bubbles reach an equilibrium distance, which is stable to small vertical disturbances
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Figure 8. P (Vr � 0 | R < r), the probability that the radial relative velocity between two
bubbles is positive, versus θ for three different values of r . The parameters are the same as in
figure 7.

but unstable to horizontal ones. When more than two bubbles are present, these
disturbances are caused by the neighbouring bubbles. For the deformable bubbles,
P (Vθ > 0 | R < r) ≈ 0.5 at θ ≈ 0, indicating that there is no tendency for two vertically
aligned bubbles to rotate around each other. This is in agreement with the previous
observation that deformable bubbles tend to align themselves vertically with respect
to their neighbours. The results in the non-streaming and streaming phases are
qualitatively similar.

In summary, the interaction of two bubbles can be described by the following
sequence of events, illustrated in figure 10. If two bubbles are initially in line, the
trailing bubble accelerates in the wake of the leading bubble. Two spherical bubbles
rotate about each other before they collide, while two deformable bubbles remain in
line until they collide, and then rotate about each other. This pairing process is similar
to the ‘drafting, kissing, and tumbling’ mechanism identified by Fortes, Joseph &
Lundgren (1987) for solid spheres sedimenting in water. The major difference between
solid spheres and spherical bubbles is that the wake effect, and therefore the ‘drafting’
mechanism, is weaker for bubbles than for solid particles, so that a vertical alignment
of spherical bubbles is less stable than a vertical alignment of solid spheres. The reason
for the weaker wake effect is the lesser amount of vorticity generated at a free interface
than at a no-slip boundary. As a consequence, two spherical bubbles tend to ‘tumble’
before they have a chance to ‘kiss’. Spherical bubbles do collide with each other, as the
results for G(r) show, but this is due to the large void fraction, not the wake effect. In
fact, we verified that spherical bubbles never touch in the more dilute case, α = 2%.
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Figure 9. P (Vθ � 0 | R < r), the probability that the angular relative velocity between two
bubbles is positive, versus θ for three different values of r . The parameters are the same as in
figure 7.

Eo = 1
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‘Drafting’ ‘Kissing’ ‘Tumbling’

Figure 10. Schematic representation of the ‘drafting, kissing and tumbling’ sequence
(Fortes et al. 1987).

It is interesting to look at the previous findings in light of potential flow results
for the relative motion of two bubbles. In the potential flow approximation, the
Reynolds number is assumed to be large enough that the flow around each bubble
can be considered inviscid and irrotational, yet small enough that the bubbles do
not deform significantly. Biesheuvel & van Wijngaarden (1982), Kok (1989) and
van Wijngaarden (1993) showed that two in-line bubbles repel each other and that
two bubbles always approach each other horizontally. This mechanism leads to the
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formation of horizontal rafts of bubbles in the potential flow simulations of bubbly
liquids of Smereka (1993), Sangani & Didwania (1993) and Yurkovetsky & Brady
(1996). In our simulations at finite Reynolds numbers, pairs of spherical bubbles also
tend to align themselves horizontally, but the interaction process is fundamentally
different. Two spherical bubbles approach each other along a vertical line and then
rotate into a horizontal configuration. When they are aligned horizontally, they repel,
owing to the vorticity generated at the interface, as shown by Legendre & Magnaudet
(1998). Since larger amounts of vorticity are generated at the interfaces of deformable
bubbles, they repel faster than spherical bubbles. Legendre & Magnaudet found that
two side-by-side bubbles attract each other when they are far from each other but
repel when they are close, so that there exists an equilibrium distance where two side-
by-side bubbles rise steadily. In potential flow theory and simulations, since vorticity
is not accounted for, it is not surprising that side-by-side bubbles attract until they
touch, which leads to the formation of horizontal rafts.

At finite Reynolds numbers, analysis by Harper (1997) and simulations by Yuan &
Prosperetti (1994) showed that two in-line spherical bubbles attract each other owing
to wake effect and repel each other owing to an adverse pressure gradient. When
these two effects balance each other, the two bubbles reach an equilibrium distance,
which is unstable to lateral disturbances, as noted previously. However, an equilibrium
distance was not seen in the corresponding experiments of Katz & Meneveau (1996).
Instead, they observed that the two bubbles always collided. They suggested that the
discrepancy was due to the deformation of the bubbles in the experiments. Both the
existence of an equilibrium distance for spherical bubbles and the absence of it for
deformable bubbles are qualitatively consistent with our simulation results. However,
for the range of parameters used by Katz & Meneveau, which is Reb = 0.2 − 100
and Eo < 0.3, our results for Eo = 1 bubbles indicate that in-line bubbles should not
collide. This suggests that surface deformation is not the factor responsible for the
collisions observed in the experiments. The real reason might be the presence of
surfactants in the experiments. Surfactants are known to have a profound effect on
the behaviour of small bubbles, and especially on the amount of vorticity generated
at the interface and hence the strength of the wake.

The influence of the microstructure on the rise velocity is illustrated in figure 11,
where the drift Reynolds number of bubble pairs is plotted versus θ . The mean
drift Reynolds number, Red , is represented by a solid horizontal line, except in the
streaming phase, where no average rise velocity can be defined, since the motion of
the bubbles is unsteady. Two in-line bubbles (θ ≈ 0 and θ ≈ π) rise faster than two
side-by-side bubbles (θ ≈ π/2). The average velocity of a close pair of side-by-side
bubbles (r = 2.5a and θ ≈ π/2) is about 23 for deformable bubbles (figure 11a) and 19
for spherical bubbles (figure 11c). Since deformation increases the drag (Moore 1965)
and since our results show that the side-by-side configuration minimizes the rise
velocity, it seems surprising that the velocity of a pair of close side-by-side defor-
mable bubbles is larger than both the average velocity of all bubbles, Red =21.50, and
the velocity of a pair of close side-by-side spherical bubbles. A possible explanation
relies on the observation that the situation where two bubbles are very close and
side-by-side is usually the result of the ‘drafting, kissing and tumbling’ pairing process
since side-by-side bubbles usually repel. In this situation, the two bubbles are already
moving fast because of the previous acceleration of the trailing bubble in the wake
of the leading bubble and their subsequent collision (see also § 4.3). When the two
bubbles are aligned horizontally and repel, their rise velocity subsequently decreases,
as seen in figure 11(a, b).
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Figure 11. The average drift Reynolds number of pairs of bubbles as a function of θ for
three different values of r . The parameters are the same as in figure 7. The horizontal lines
mark the average drift Reynolds numbers, 〈Red〉, calculated over the [25, 90] time interval for
(a) and the [30, 256] time interval for (c).

t√(g/d )
0

30

35

50 200

Red

20

25

150100

Eo = 5 α = 2%
1        2%

10

5

15

5        12%
1        12%

Figure 12. Average drift Reynolds number vs. time for the ellipsoidal bubbles (Eo=5) and
the spherical bubbles (Eo= 1) at α = 2% and 12%.

4.2. Effect of void fraction

The average drift Reynolds number of the 27 ellipsoidal and spherical bubbles is
shown versus time in figure 12 for α = 2% and 12%. The peak in the initial transient
occurs at a later time for the ellipsoidal bubbles than for the spherical bubbles, since
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Figure 13. Mean drift Reynolds number as a function of the void fraction for Eo= 1 and
Eo= 5. The terminal velocity of a single bubble in an unbounded flow, ReT , is added for
each case. Fits to the simulation results and to these terminal velocities are also shown:
〈Red〉 = 26.3 (1 − α)3 for Eo= 5 and 〈Red〉 = 36.0 (1 − α1/3) for Eo= 1. The point for Eo= 5,
α = 6% corresponds to the average of the data in the [25, 90] time interval, before the streaming
phase.

the wake is larger and takes longer to develop. We note that the deformation of the
ellipsoidal bubbles from their initially spherical shape happens much faster than the
duration of the initial transient. The system reaches a statistical steady state in all
cases, characterized by larger fluctuations around the mean for the ellipsoidal than
for the spherical bubbles. No streaming is observed for the deformable bubbles for
α = 2% and α = 12%. For Eo = 5, α = 12%, a small peak can be seen at t(g/d)1/2 ≈ 80.
A computer animation shows that the deformable bubbles start to form a stream at
this time, but the stream breaks up almost immediately because the large void fraction
prevents the bubbles from organizing themselves into a large-scale flow structure. For
Eo= 5, α = 2%, it will be seen in § 4.6 that the bubbles form a stable stream when
they are initially placed in a vertical column. In contrast, no streaming instability
is observed in figure 12, where the bubbles are initially distributed in a perturbed
regular array. It is likely that a stream would form at a later time if the simulation
were continued. This point is discussed further in § 4.6.

The mean drift Reynolds number, Red , is shown versus the void fraction in figure 13.
The point for Eo = 5, α = 6% corresponds to the average of the data in the [25, 90]
time interval, before the streaming phase. In addition to the simulation results at
α = 2% , 6% and 12%, the steady rise Reynolds number of a single bubble in an
infinite domain, ReT , which corresponds to α = 0, is also shown (see § 2 for Eo = 5
and Bunner & Tryggvason 2002a for Eo= 1). Whereas the value of ReT of a spherical
bubble, 36.0, is much larger than the value of ReT of an ellipsoidal bubble, 26.3, the
values of Red in the [2%, 12%] void fraction range are within 5% of each other. For
spherical bubbles, Red drops sharply between α = 0 and α = 2% owing to a change in
the microstructure. A similar rapid dropoff was found in experiments at Re ∼ 200 by
van Wijngaarden & Kapteyn (1990) for bubbles that were likewise nearly spherical.
The slower decrease between α = 0 and α =2% for the ellipsoidal bubbles can be
explained by the different interaction mechanisms between the bubbles that were
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Figure 14. Radial pair distribution function for (a) α =2% and (b) α = 12%. For α =2%, the
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discretized into, respectively, 60 and 40 �r intervals in (a) and (b). The results are averaged
over at least 500 equispaced time samples in the [Ti, Tf ] time interval.

discussed in § 4.1. In very dilute conditions, the bubbles do not interact much. As the
void fraction increases and the interactions become more important, spherical bubbles
tend to align themselves in horizontal pairs, whose average rise velocity is lower than
the rise velocity of isolated bubbles (Legendre & Magnaudet 1998). In contrast,
deformable bubbles tend to align themselves in vertical pairs, whose rise velocity is
higher than the velocity of isolated bubbles (Harper 1970; Yuan & Prosperetti 1994).
As a result, even though the average velocity decreases as α increases, this decrease
is slower for deformable bubbles than for spherical bubbles. The evolution of the
rise velocity with the void fraction is therefore the result of the competition of the
hindering effect due to other bubbles in the flow, which tends to increase the drag,
and the bubble–bubble interaction mechanism, which tends to decrease the drag in
the case of deformable bubbles. This is discussed further in § 4.6.

Two fits to the simulation results and the ReT points are added to figure 13.
The (1 − α)3 power law suggested for the deformable bubbles is the experimental
correlation proposed by Ishii & Zuber (1979) in this range of Reynolds number (they
call it ‘viscous regime’). The (1 − α1/3) relation for the spherical bubbles is a purely
numerical fit.

The radial relative distribution function, G(r), is shown in figure 14 for α = 2% and
12%. For Eo= 1 and α = 2%, G(r) = 0 for r < 2.5a, indicating that spherical bubbles
tend to stay away from each other in dilute conditions. We verified that spherical
bubbles never touch at α =2% by calculating the minimum distance between the
interfaces of neighbouring bubbles at each time step in the simulation. A small peak
in G(r) can be seen at r ≈ 7a, consistent with the observation, also made in a computer
animation of the bubbles’ motion, that spherical bubbles tend to repel each other. For
Eo = 5 and α = 2%, G(r) > 0 for r � 0.8a, suggesting that deformable bubbles touch
and that their deformation increases when they do so. This is also seen in a computer
animation of the bubbles’ motion and in Bunner & Tryggvason (1999b). It is possible
to identify a number of ‘drafting, kissing and tumbling’ events in the animation. This
mechanism is the reason why two deformable bubbles usually come close to each
other, and bubbles are rarely seen to approach each other horizontally, similarly to
what Stewart (1995) observed in experiments. For Eo =1 and α = 12%, G(r) > 0 for
r > 1.6a and has a peak at r ≈ 2.7a. These results are similar to those found at α = 6%
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and show that spherical bubbles collide when the void fraction is high. For Eo = 5
and α = 12%, no peak is visible, and G(r) > 0 for r � 0.9a. The minimum value of
r at which G(r) > 0 is larger at α =12% than at α = 2%. This is due to the larger
deformation of the bubbles at α = 2% when they collide as explained below. At a void
fraction of 2%, the interactions are primarily binary. A bubble which is drafted into
the wake of another bubble has a large velocity relative to the leading bubble. When
the two bubbles collide, the large kinetic energy of the trailing bubble translates into
large deformations of both bubbles. At a void fraction of 12%, bubbles interact with
many neighbours simultaneously. As a result, pairs of bubbles do not have enough
time to undergo the full ‘drafting, kissing and tumbling’ cycle and a bubble trailing
another bubble does not accelerate as much as it does at 2%, and therefore does not
deform as much upon collision. Deformation is discussed further in § 4.3.

Gr (θ), P (Vr > 0 | R < r) and P (Vθ > 0 | R < r) for α = 2% and 12% are not shown,
but they exhibit the same qualitative trends as for α = 6%. The tendency for pairs of
ellipsoidal bubbles to be aligned vertically is more pronounced when the void fraction
is low. For high void fractions, vertical alignments of pairs of bubbles tend to be
perturbed by the surrounding bubbles. As a consequence, the curves of the average
drift Reynolds number of a pair of bubbles as a function of θ is flatter for α = 12%
than for α =2%. For example, the difference between the values of 〈Red〉 at θ = 0
and θ = π/2 for r =4.0a is 8 for α = 2%, but only 4 for α = 12% (it is 5 for α = 6%,
see figure 11a).

4.3. Deformation and orientation of the bubbles

When the deformation of a bubble is small, it is usually characterized by the ratio
between the longer and smaller axes (Moore 1965). Since it is not possible to measure
this quantity precisely for all bubbles at all times, we define the deformation of a
bubble as the square root of the ratio of the larger and smaller eigenvalues of the
second moment of inertia tensor, χ = (Imax/Imin)

1/2, the second moment of inertia
being defined by:

Iij =
1

Volb

∫
Volb

(
xi − xi0

)(
xj − xj0

)
dV, (4.3)

where Volb is the volume of the bubble and xi0 and xj0
are the coordinates of the

bubble’s centroid in the i and j directions. The volume integrals are calculated
as surface integrals over the bubble interface using the divergence theorem. For a
parallelepiped with sides of lengths a > b >c, it can be shown that χ = a/c. We
performed a number of tests with a single bubble in a periodic cell (a ‘regular array’),
where α =6%, N = 900 and the surface tension varied such that 0.1 � Eo � 10. We
found that χ increased from 1.008 to 1.379 as Eo increased from 0.1 to 10. Since
the motion of the bubble is steady for these parameters, we measured the ratio of
the longer and smaller axes from plots of the bubble and found that the relative
difference between the measured value and χ was less than 1.5%. For a larger defor-
mation, Eo =50, we found that χ = 1.585 and that the difference between the measured
value and χ was 6%. χ therefore provides a good estimate of the deformation when
it is small. In addition to the deformation, the second moment of inertia tensor also
allows us to define the orientation angle of each bubble as the angle φ between the
vertical direction and the minor axis, which corresponds to the eigenvector with the
smallest eigenvalue. For an oblate bubble rising in steady motion, φ = 0.

Plots of the time evolution of χ and φ (not included) show that at t = 0, χ = 1 since
the bubbles are initially spherical, then the bubbles deform until χ ≈ 1.4 and accelerate
without significantly interacting with their neighbours. At t(g/d)1/2 ≈ 10, the initial
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Figure 15. Two bubbles from the Eo= 5, α =2% simulation at times 103.0, 105.3, 106.1 and
107.0, from left to right.
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Figure 16. (a) Rise Reynolds number, (b) deformation, χ , and (c) orientation angle, φ, of the
two bubbles in figure 15 versus time. —, bubble 2 and – – –, bubble 17 are, respectively, the
leading and trailing bubbles in figure 15. The vertical dotted lines denote times 103.0, 105.3,
106.1 and 107.0.

array breaks up and the bubbles start to interact strongly. χ and φ then fluctuate
because of collisions between the bubbles. A typical interaction event is illustrated in
figure 15. One bubble accelerates in the wake of a leading bubble until they collide,
after which the trailing bubble pushes the leading bubble aside. The rise velocity,
deformation, and orientation of these two bubbles are shown in figure 16 to study
in detail the sequence of events in this ‘drafting, kissing and tumbling’ process. As
the two bubbles come closer to each other, their rise velocities increase. Owing to the
suction effect of the wake, the trailing bubble is slightly less deformed than the leading
bubble. Its shape is asymmetric, with a bulge on its upper half, as seen in figure 15.
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Figure 17. Mean (a) deformation, χ , and (b) orientation angle, φ, versus void fraction. The
mean deformation is the average of χ over the [Ti, Tf ] time interval and over the 27 bubbles.
The mean orientation is the average of |θ | over [Ti, Tf ] and over the 27 bubbles. The points
for Eo= 5, α =6% correspond to the averages of the data in the [25, 90] time interval, before
the streaming phase. �, Eo= 5; �, 1.

When the two bubbles touch, their rise velocity starts decreasing and the deformation
of the leading bubble increases by about 50%, as the kinetic energy of the fluid
is transformed into surface energy of the bubble interface. The deformation of the
trailing bubble increases also, but after a delay and to a lesser extent than that of the
leading bubble. After the two bubbles have separated, their deformations experience
small underrelaxations, but no shape oscillations are observed in this system, unlike in
the results of experiments by Lunde & Perkins (1998), which were performed at much
higher Reynolds numbers. The orientations of the bubbles in figure 16(c) experience
sharp fluctuations around φ = 0, the angle corresponding to the steady rise motion of
an oblate bubble. Figure 15 illustrates a collision that is nearly on-axis and produces
large increases in deformation and rise velocity. In addition, the bubbles frequently
experience slightly off-axis collisions, which are characterized by smaller increases in
deformation and rise velocity, or, owing to the finite void fraction, interactions with
horizontal neighbours, where the bubbles repel each other.

In experimental studies of binary interactions of deformable bubbles, Stewart (1995)
and Brücker (1999b) observed that collisions between bubbles only occurred after one
bubble had been captured in the wake of another bubble. The description of the
collision process in these papers is similar to the sequence of events in figure 16, with
one significant difference. In the experiments, the trailing bubble did not accelerate
smoothly in the wake of the leading bubble, as it does in our simulations, but in
a series of jumps. The difference can be attributed to the more complicated wake
structure due to the larger bubble rise Reynolds numbers of the experiments (see
Brücker 1999b for a discussion of wake structure). Interestingly, Stewart notes that
the two bubbles never coalesce during the initial collision.

The average deformation and orientation angle of the bubbles is shown versus
the void fraction in figure 17. For Eo =5, χ ≈ 1.45. For Eo = 1, χ ≈ 1.10. When α

increases, the fluctuations of χ and φ increase as the bubbles interact more frequently
and with more neighbours. However, the mean deformation decreases as α increases,
as seen in figure 17(a). This decrease is attributable to the reduction in the rise velocity
and to increased interaction of vertical pairs of bubbles, where the suction of the
leading bubble leads to a bulge and therefore a smaller deformation of the trailing
bubble, as seen in figure 15. For ellipsoidal bubbles, another reason is the smaller
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b )1/2d/µf . In (c) and (d), the fluctuation
velocities are scaled by the instantaneous drift velocities, from figure 2. �, Eo= 5; –·–, 1.

differential velocity of two interacting bubbles at high void fraction than at low void
fraction and, subsequently, smaller deformation upon collision. The data shown in
figure 17 for Eo = 5, α = 6% is only for the non-streaming phase. In the streaming
phase, the deformation increases significantly as the bubbles’ velocities increase and
reaches values larger than for α = 2%. This data is not shown in the figure because no
steady state was reached in the streaming phase. The increase of the mean orientation
angle in figure 17(b) indicates that the angle between the vertical plane and the minor
axis of the bubbles tends to increase as α increases. This is consistent with the fact
that the bubbles experience larger fluctuations and more frequent interactions with
their neighbours at high void fraction than at low void fraction, where φ = 0 in the
limit α → 0, since the rise motion of a single bubble in this range of Reynolds numbers
is steady.

4.4. Hydrodynamic dispersion of the bubbles

The vertical and horizontal bubble fluctuation Reynolds numbers are shown versus
time in figures 18(a, b) for α = 6%. While the rise velocities of the spherical and
ellipsoidal bubbles are similar, the velocity fluctuations of the ellipsoidal bubbles are
much larger than those of the spherical bubbles. In the streaming phase, the velocity
fluctuations of the ellipsoidal bubbles increase (figure 18a, b), like the rise velocity.
However, the velocity fluctuations scaled by the rise velocity (figure 18c, d) remain
approximately constant, except for t(g/d)1/2 > 170, shortly before the simulation had
to be stopped.
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the streaming phase. �, Eo= 5; �, 1.

The mean vertical, horizontal and total fluctuation Reynolds numbers are shown in
figure 19(a–c). The horizontal velocity fluctuations increase in the entire [2%, 12%]
interval, as do the vertical velocity fluctuations of the spherical bubbles. However, the
vertical velocity fluctuations of the ellipsoidal bubbles remain at about the same level
between 2% and 12%. As a result, the ratio of the vertical or streamwise velocity
fluctuations over the horizontal or cross-stream velocity fluctuations at Eo = 5 and
Eo= 1 is about 3.9 for α = 2%, but only 1.7 for α = 12%. The velocity fluctuations
are strongly anisotropic, as seen in figure 19(d), but the anisotropy declines too as the
void fraction increases.

Bunner & Tryggvason (2002a) found that the variance of the spherical bubble
velocities, i.e. the square of the total velocity fluctuations, followed an affine scaling
with the void fraction and the rise velocity: Re2

u′+v′+w′ = 0.54αRe2
b − 0.0069, where

Reu′+v′+w′ = ρf (U ′2
b +V ′2

b +W ′2
b )1/2d/µf . From figure 20, it is clear that no such scaling

exists for the variance of the ellipsoidal bubbles.
Because of continual interactions between a bubble and its neighbours, two bubbles

that are close at time T0 move apart as they rise, so that the mean-square displacement
of the bubbles X2

b(T | T0), increases with time T . X2
b(T | T0) is defined by

X2
b(T | T0) =

1

Nb

∑
l=1,Nb

[
�X

(l)
b (T ) − �X

(l)
b (T0)

]2
, (4.4)
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where �X
(l)
b (T ) = X

(l)
b (T ) − Xb(T ) is the distance between the position X

(l)
b (T ) of

bubble l and the barycentre of all bubbles at time T ,

Xb(T ) =
1

Nb

∑
l=1,Nb

X
(l)
b (T ).

In all these expressions, X
(l)
b (T ) stands for the centre of mass of bubble l in any of

the three spatial coordinates (see Bunner & Tryggvason 2002a for a description of
how the centre of mass is defined and calculated from the position of the interface).
Note that Xb(T0 | T0) = 0 by definition.

The hydrodynamic dispersion of the bubbles is commonly described by a diffusion
model (Crowe, Troutt & Chung 1996, Sokolichin, Eigenberger, Lapin & Lübbert
1999). However, for this model to be applicable, it must be shown that the statistics
of the bubble motion are Gaussian (Batchelor & Townsend 1956). To that effect, we
determine the probability density function of the bubble velocity which is shown in
figure 21. The values of the bubble velocities are normalized so that the p.d.f. has
zero mean and would have a standard deviation of one if the statistics of the bubbles’
motion were Gaussian. Bunner & Tryggvason (2002a) found that this probability
density was approximately Gaussian for Eo= 1 and α varying from 2% to 24%.
The differences between the results and the Gaussian curve are larger for ellipsoidal
bubbles than for spherical bubbles. The departure from a Gaussian distribution is
high at α = 2%, especially for Ub and Vb but is smaller at higher void fractions. The
flatness factor for the results in figure 21 is between 2.6 and 5.2, whereas it is between
2.3 and 3.5 for the spherical bubbles (Bunner & Tryggvason 2002a). For Eo= 5 and
α = 6%, the p.d.f. of Wb in the streaming phase is strongly asymmetric, with a peak at
a positive value, while the p.d.f.’s of Ub and Vb are symmetric and their maxima are
at 0. The asymmetry for Wb can be seen in figure 21(c) and explained in the following
manner. In the streaming phase, most of the bubbles rise together in the stream and
have high rise velocities of nearly equal value, while a few bubbles located at the edge
of the stream and in the liquid away from the stream have much lower rise velocities
and in some cases even negative rise velocities.
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The diffusion of fluid particles in turbulent flows was studied by Taylor (1921),
who proved that the mean square displacement of the fluid particles increases at a
uniform rate at large times. When this result is transposed to the problem of following
the motion of bubbles instead of fluid particles, it can be written, in our notations
and in the case of the vertical direction component, as X2

b(T | T0) = 2〈W ′
b〉2

TL(T − T0)
for (T − T0)  TL, where TL =

∫ ∞
0

RWW (T ) dT is the Lagrangian integral time scale
and RWW (T ) is the Lagrangian autocorrelation function of the velocity fluctuations
of the bubbles, which is defined later in this section. An alternative method to test
the validity of a diffusion model is therefore to verify whether the pseudodispersion
coefficients, defined by D′(T ) = X2

b(T | T0)/2(T − T0), converge as T − T0 increases.
Here, D′(T ) stands for the pseudodispersion coefficient in any of the three spatial
coordinates, D′

x(T ), D′
y(T ) or D′

z(T ). It is computed by averaging over the [Ti, Tf ]
interval defined in table 1 in order to avoid the initial transient, using a discretized
form of the integral:

D′(T ) =
1

Tf − Ti − T

∫ Tf −T

Ti

X2
b(T | T0)

2(T − T0)
dT0, (4.5)

T ranging from 0 to Tf − Ti . The time-averaging over T0 = [Ti, Tf ] is a substitute
for ensemble-averaging over a large number of simulations with different initial



Effect of bubble deformation on the properties of bubbly flows 105

0 50 100

0.4

1.8

1.2

1.6

2.0
(a)

Eo = 5 α = 6%
         1       6%

150 200

D
� z/

(d
√(

gd
))

0 50 100

0.07
(b)

Eo = 5 α = 6%
         1       6%

150 200

(D
(D

� x+
D

� y)
/(

d√
(g

d
))

0.06

0.05

0.04

0.03

0.02

0.01

0 50 100

0.4

1.0

1.2
(c)

Eo = 5 α = 2%
         5       12%

150 200

D
� z/

(d
√(

gd
))

0 50 100

(d )

150 200

� x+
D

� y)
/(

d√
(g

d
))

0.05

0.04

0.03

0.02

0.01

0.8

0.6

0.2

         1        2%
         1       12%

T√(g/d)

Eo = 5 α = 2%
         5       12%
         1        2%
         1       12%

T√(g/d)

Figure 22. Dispersion coefficients versus time: (a) vertical and (b) horizontal coefficients for
α = 6%, (c) vertical and (d) horizontal coefficients for α = 2% and 12%.

conditions, which is not feasible. It leads to lower statistical variability than if D′(T )
is calculated using a single value of T0. Nevertheless, while the grid independence tests
show that the motion of the bubbles is well resolved, it will be shown that the results
are likely to be affected by the relatively small number of bubbles and the limited
simulation time. In spite of that, the results provide important qualitative insight into
the dispersion process of the bubbles for different void fractions and different levels
of bubble deformation.

Since the x and y directions are equivalent, D′
x(T ) and D′

y(T ) are approximately

equal. D′
x(T ) + D′

y(T ) and D′
z(T ) are non-dimensionalized by d(gd)1/2 and are shown

in figure 22. For Eo = 5 and α = 6%, neither D′
x(T ) + D′

y(T ) nor D′
z(T ) show any

sign of converging as T increases. This is consistent with the strong asymmetry noted
previously in the probability density of Wb and suggests that the dispersion process
in the streaming phase cannot be considered Gaussian. However, we note that a
definitive answer awaits further simulations past the time when we had to stop this
run. For all other cases, D′

x(T ) + D′
y(T ) and D′

z(T ) seem to converge as T grows. For
Eo = 5, convergence is slower for α = 2% than for α = 12%, which is consistent with
the larger non-Gaussian effects seen in figure 21(a) than in figure 21(d). The limits
of D′

x(T ) + D′
y(T ) and D′

z(T ) as T increases are the dispersion coefficients D′
x + D′

y

and D′
z. We then define the horizontal and vertical Lagrangian integral time scales of

the bubble’ motion, Tx+y and Tz, by D′
x +D′

y = 〈(U ′2
b +V ′2

b )1/2〉2Tx+y and D′
z = 〈W ′

b〉2Tz,
respectively.

The dispersion coefficients are much larger for Eo = 5 than for Eo = 1. For example,
for α = 2%, D′

z is approximately 30 times larger for Eo = 5 than for Eo =1. Since W ′
b
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Figure 23. (a) Vertical and (b) horizontal diffusion coefficients. (c) Vertical and (d) horizontal
Lagrangian time scales. Ratio of the vertical and horizontal (e) diffusion coefficients and
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z = 〈W ′
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D′
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y = 〈(U ′2
b + V ′2

b )1/2〉2Tx+y . �, Eo= 1; ×, 1.

is 3.9 times larger for Eo = 5 than for Eo =1, the Lagrangian integral time scale Tz is
about two times larger for Eo = 5 than for Eo = 1. The ratio of the values of D′

z for
Eo= 5 and Eo= 1 decreases with the void fraction, though. At α =12%, it is only 4.
The ratio of values of D′

x + D′
y for Eo= 5 and Eo = 1 is also equal to 4, at α =2%

and α = 12%.
The diffusion coefficients and Lagrangian integral time scales are shown versus α in

figure 23. The diffusion coefficients generally increase with the void fraction, like the
velocity fluctuations, with the exception of D′

z for Eo =5, which is smaller at α = 12%
than at α = 2% by a factor of two. The Lagrangian integral time scales generally
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decrease when α increases. The anisotropy of both the diffusion coefficients and the
Lagrangian integral time scales is very high, particularly for Eo = 5, α = 2%. Bunner &
Tryggvason (2002a) showed that the number of bubbles in the periodic cell, Nb, has
a strong effect on the horizontal components of these two quantities in the case of
spherical bubbles. For example, D′

x + D′
y is more than twice as large for Nb = 216 as

it is for Nb =27. Although no study of the effect of system size was conducted for
deformable bubbles, we expect this effect to be significant for ellipsoidal bubbles too,
in particular for D′

x + D′
y and Tx+y . Larger simulations are clearly needed to obtain

results that do not depend on the size of the computational domain, especially for
the horizontal components.

4.5. Liquid velocity fluctuations

Although the Reynolds number of the simulations reported here is low and the flow
field around a bubble remains laminar, averaging approaches used to model two-phase
flows lead to the appearance of pseudoturbulent Reynolds stresses characterizing the
randomly fluctuating liquid velocity produced by the motion of the bubbles. w′w′

and u′u′ + v′v′ are shown versus time in figure 24(a, b) for α = 6%. The off-diagonal
Reynolds stresses, 〈u′v′〉, 〈u′w′〉 and 〈v′w′〉, are approximately zero but not exactly zero
because of the limited system size. For Eo= 5 and α =6%, both w′w′ and u′u′ + v′v′

increase when the deformable bubbles form a stream. However, (u′u′ + v′v′)/W 2
b is

lower in the streaming phase than in the non-streaming phase, whereas w′w′/W 2
b

is larger in the streaming phase than in the non-streaming phase. The Reynolds
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Figure 25. The time-averaged Reynolds stresses and pseudoturbulent kinetic energy 〈KE〉
as a function of α for �, Eo= 5 and �, Eo= 1: (a) Vertical Reynolds stress, (b) horizontal
Reynolds stress, (c) pseudoturbulent kinetic energy. (d) Ratio of the vertical over horizontal
Reynolds stresses. The points for Eo= 5, α =6% correspond to the averages of the data in
the [25, 90] time interval, before the streaming phase.

stresses induced by the bubbles in the liquid are larger for Eo = 5 than for Eo =1.
Stewart (1995) showed that the wake capture and collision process of deformable
bubbles implied a large amplification of turbulent kinetic energy production. A more
detailed examination of the wake structure by Brücker (1999b) suggested that this
amplification is due to the enlargement of the wake during the collision. While these
observations are derived from experiments with bubbles of larger deformation and
rise velocity, they are more consistent with the larger Reynolds stresses seen for
Eo= 5, where events of wake capture and collision occur frequently, than for Eo =1,
where no such event has been observed.

The average Reynolds stresses and the pseudoturbulent kinetic energy are shown
versus α in figure 25. Like the bubble velocity fluctuations, the horizontal component
of the liquid velocity fluctuations grows faster with α than the vertical component.
The anisotropy of the Reynolds stress tensor therefore decreases as α increases, as
seen in figure 25(d). We note that this anisotropy is much larger for deformable
bubbles than for spherical bubbles.

An estimate of the time-averaged Reynolds stresses can be obtained for spherical
bubbles using potential flow theory (Biesheuvel & van Wijngaarden 1984):

〈u′
iu

′
j 〉 =




3
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20
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0 0 4
20


 α〈Wb〉2

. (4.6)
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Figure 26. Pseudoturbulent kinetic energy 〈KE〉 scaled by α〈Wb〉2. The point for Eo= 5,
α = 6% corresponds to the average of the data in the [25, 90] time interval, before the
streaming phase. �, Eo= 5; �, 1; �, potential flow.

The pseudoturbulent kinetic energy scaled by α〈Wb〉2 is shown versus α in figure 26.
As noted by Bunner & Tryggvason (2002b), α〈Wb〉2 provides a good scaling for 〈KE〉
in the case of spherical bubbles, even though the values of 〈KE〉/(α〈Wb〉2

) for the
potential flow model and the simulation results differ considerably. For deformable
bubbles, however, this scaling is clearly not applicable.

To examine the structure of the velocity field, we determine the isotropic kinetic
spectrum, E(k). The spectrum is computed from the velocity and density fields u and
ρ in the entire computational domain Ω and is normalized such that:∑

k

E(k)�k =
1

2

∫
Ω

ρ‖u‖2
dV. (4.7)

First, the discrete Fourier transforms of the velocities multiplied by the square root
of the density are calculated. Then, the energy content is summed in spherical shells
of width �k centred at k = (k2

x + k2
y + k2

z )
1/2, where (kx , ky , kz) is the wave vector.

The kinetic energy spectrum is shown at four consecutive times for Eo = 5, α = 2% in
figure 27(a), for Eo =5, α = 6% in figure 27(b), and for Eo = 5, α = 12% in figure 27(d).
Since the flow field is initially quiescent and no external forcing is applied, the long
waves contain little energy immediately after the bubbles are released. The peaks at
kd = 2.10, 3.04 and 3.85 at the first times in figures 27 (a), (b) and (d) correspond
to the average horizontal or vertical distances between neighbouring bubbles in the
perturbed array. As pointed out by Esmaeeli & Tryggvason (1996), the bubbles can be
viewed as a stirring force acting on the liquid. As time increases, energy is fed by the
bubbles into the long wave components of the spectrum, while the energy content of
the short-wave components of the spectrum remains approximately constant. Unlike
the two-dimensional results of Esmaeeli & Tryggvason (1996), here there exists a
statistical steady state, where the production of energy by the bubbles balances the
dissipation of energy in the liquid and at the bubble interface. The exception is the
α = 6% case, in figure 27(b), where the increase in the pseudoturbulent kinetic energy
due to streaming leads to an increase of E(k) at all wavenumbers k, but particularly
at low k, which reflects the formation of a large-scale flow structure. At α =2%, E(k)
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Figure 27. Kinetic energy spectrum for (a) Eo= 5, α =2%, (b) Eo= 5, α = 6%, (c) Eo= 5
and Eo= 1, α = 6%, t(g/d)1/2 = 57.2, (d) Eo= 5, α = 12%. The vertical dotted lines correspond
to the mean spacings between the bubbles’ centroids, which are, respectively, kd = 2.10, 3.04
and 3.85 for α = 2, 6 and 12%, and to the bubble diameter, kd =6.28.

at low k increases also steadily and monotonically with time, which is consistent with
the increase in w′w′ seen at later times for Eo= 5, α = 2%, but does not reflect a
transition to streaming.

A comparison of the kinetic energy spectrum for the spherical and the deformable
bubbles at α = 6% in figure 27(c) reveals that the spectra are similar at high
wavenumbers. The larger kinetic energy seen in figure 25(c) for Eo = 5 than for
Eo= 1 manifests itself mainly in the larger energy content of the long wavelengths.
It appears that the kinetic energy spectrum can be separated into two regions, low
and high wavenumbers. In the low-wavenumber region, the spectrum is determined
by the interaction between the bubbles and the collective structures that they form.
Since these structures were shown to be qualitatively different, it is reasonable to
see differences in spectrum at low wavenumbers. In the high-wavenumber region, the
spectrum corresponds to velocity fluctuations on length scales smaller than the bubble
diameter and is therefore determined primarily by the structure of the flow around
individual bubbles, particularly in the wake. While stronger vorticity is generated at
the interface of the deformable bubbles than at the interface of spherical bubbles,
which should result in stronger velocity fluctuations in the wake, the structure of the
flow around the bubbles is the same, which is consistent with the observation that the
spectra at high wavenumbers are approximately the same.

To our knowledge, the only other study of liquid velocity fluctuations induced
by bubbles in homogeneous bubbly flows is the experimental work of Lance &
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〈w′w′〉/gd 〈u′u′ + v′v′〉/gd εf /ρf (g3d)
1/2

α (%) Eo 〈Reb〉 (10−2) (10−2) (10−2) lK/d uK/Wb λ/d Reλ

2 1 27.14 1.77 0.54 1.61 0.219 0.168 0.692 1.29
2 5 25.84 5.93 0.55 1.54 0.221 0.175 0.836 3.68
6 1 23.35 3.59 1.39 4.14 0.173 0.248 0.448 1.76
6 5 22.87 10.5 1.65 3.92 0.175 0.249 0.718 4.33

12 1 20.09 4.98 2.30 7.07 0.151 0.329 0.414 1.94
12 5 20.82 11.7 3.04 6.59 0.154 0.312 0.611 4.06

Table 2. Properties of the velocity fluctuations in the liquid: vertical and horizontal Reynolds
stresses 〈w′w′〉 and 〈u′u′ + v′v′〉, dissipation rate per unit volume, εf , Kolgomorov length and
velocity scales lK and uK , Taylor miscroscale λ, microscale Reynolds number Reλ. εf is the total

dissipation rate in the liquid, εf =
∑

εfij
, where εfij

= (1/Ωf )
∫

Ωf
µ(∂ui/∂xj + ∂uj/∂xi)

2 dV .

The Kolmogorov scales are determined according to lK = (ν3
f ρf /εf )1/4 and uK = (εf νf /ρf )1/4.

λ is evaluated roughly by using the single-phase formula for homogeneous isotropic turbulence,
εf = 15νf u′2/λ2, where u′ is the r.m.s velocity determined from the pseudoturbulent kinetic
energy in the liquid, u′ =(2〈KE〉/3)1/2 (Tennekes & Lumley 1972). Reλ is defined as
Reλ = u′λ/νf . The mean rise Reynolds number of the bubbles, 〈Reb〉, is added for reference.

Bataille (1991), who found that the kinetic energy spectrum follows a power law
with a slope of −8/3 at high wavenumbers. Our results show that a power law with
a slope of approximately −3.6 applies at all void fractions for both spherical and
deformable bubbles. The difference in the slopes can be attributed to the difference in
the Reynolds number between the experiments of Lance & Bataille (1991), where it
is of order 1000, and our simulations, where it is of order 20. In addition, the values
of the slope in the simulation results is quite imprecise because of the limited range
of wavenumbers due to the small size of the computational domain and because of
the disturbance created by the jump in density and velocity at the interface, whose
effect on the spectrum is difficult to evaluate. Given these limitations, the value of
the results shown in figure 27 is mainly in the qualitative information provided by
comparisons between the different cases.

The main statistical quantities of the pseudoturbulence in the liquid are summarized
in table 2. Since the ellipsoidal and spherical bubbles have approximately the same rise
velocity, the steady-state dissipation rates, and hence the Kolmogorov microscales, are
also approximately equal. However, owing to the larger pseudoturbulence induced
in the liquid by the ellipsoidal bubbles, the Taylor microscale and the microscale
Reynolds number are larger for Eo = 5 than for Eo = 1.

4.6. Effect of initial conditions

For the deformable bubbles, streaming is only observed in the α = 6% simulation. At
α = 12%, the formation of a stream seems to be inhibited by the high void fraction.
One possible explanation is that the large velocity fluctuations induced in the liquid
by the bubbles disturb the vertical arrangement of the bubbles. A simpler explanation
is that the bubbles do not have enough space to arrange themselves into streams.
At α = 2%, it is possible that the bubbles will form a stream if the simulation were
pursued until a later time. However, we have not been able to establish a criterion to
determine under which conditions the streaming instability appears. As a preliminary
study, and also to confirm our belief that bubbles at α = 2% can form a stream, we
have performed two simulations with 27 bubbles, Eo = 5, and α =2%, in which the
bubbles are initially located in a vertical column. The same numerical resolution was
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Figure 28. (a) Initial configuration for cases A (Eo= 5) and B (Eo=1). (b) Case A at
t(g/d)1/2 = 5.72. (c) Case B at t(g/d)1/2 = 5.72. (d) Case B at t(g/d)1/2 = 14.31. (e) Initial
configuration for case C (Eo=5). (f ) Case C at t(g/d)1/2 = 14.31. The streamlines in a plane
vertical cross-section are added. No streamlines are shown in (a) and (e) because the velocity
field is equal to zero at t = 0.

used as in the Eo =5, α = 2% simulation given in table 1. For the first case, denoted
case A, the configurations of the 27 bubbles at t = 0 and t(g/d)1/2 = 5.72 are shown
in figures 28(a) and 28(b). For the second case, denoted case C, the configurations of
the 27 bubbles at t = 0 and t(g/d)1/2 = 14.31 are shown in figures 28(e) and 28(f ). To
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Figure 29. (a) Drift Reynolds number of the 27 bubbles for case C (Eo= 5) versus time.
(b) Average drift Reynolds number of cases A (Eo= 5), B (Eo=1), C (Eo= 5) and D (Eo=5)
versus time.

highlight the difference between spherical and ellipsoidal bubbles, a third simulation,
denoted case B, was performed with 27 bubbles, Eo = 1, α = 2%, and the initial
configuration shown in figure 28(a). The configuration of the 27 spherical bubbles is
shown at t(g/d)1/2 = 5.72 in figure 28(c) and at t(g/d)1/2 = 14.31 in figure 28(d).

The average drift velocities of cases A, B and C are shown in figure 29(b), along
with the corresponding values for the Eo = 5, α = 2% simulation already reported
in § 4.2, which is denoted case D. The following observations can be made from
the results. The deformable bubbles in cases A and C form a stream and their rise
velocities increase steadily. The rise velocity in case A increases faster than the rise
velocity in case C because the bubbles are initially located closer to each other. Both
simulations A and C were stopped when the drift Reynolds number reached about
70, because of the insufficient numerical resolution mentioned in § 4.1. In case C,
most bubbles remain in the stream until the end of the simulation, with the exception
of two bubbles, which escape the stream and move into the region of the flow field
dominated by the liquid. Since the net momentum flux through the boundaries of
the computational domain is zero (§§ 2 and 3), the liquid away from the stream
experiences a downflow. As a result, these two bubbles decelerate and their drift
Reynolds number drops below the average drift Reynolds number of case D, 25.34,
as seen in figure 29(a). In contrast, the vertical column of spherical bubbles (case B)
breaks up almost immediately, as seen in figures 28(c) and 28(d). The drift Reynolds
number of case B rises briefly to a value of about 50. However, as the spherical
bubbles disperse through the computational domain, Red decreases and tends towards
the same value as in the case where the bubbles are initially in a perturbed regular
array, 26.60.

To summarize, the results of these simulations suggest that streaming will occur
for deformable bubbles at α = 2% too and show that the initial conditions have
a strong effect on when streaming is initiated. While limitations in computational
resources prevented us from exploring a wider range of parameters, we would like to
discuss the issue of streaming further and raise a number of questions that remain
unanswered and could be topics of future study. (i) What is the range of void fractions
at which streaming can occur? This paper has shown that streaming can occur at
α = 2% and α =6%. At higher void fractions, it is possible that the presence of
large concentrations of bubbles prevents the formation of a stream. At very low void



114 B. Bunner and G. Tryggvason

fractions, bubbles do not interact with each other and are therefore unlikely to form
a stream. (ii) When is streaming initiated? Since interactions between bubbles are
more frequent when the void fraction is larger, it is likely that streaming will be
initiated earlier at larger void fractions. This is consistent with the fact that streaming
was observed at t(g/d)1/2 ≈ 100 for α = 6% (figure 2) but was not observed for
α = 2% (figure 12), even though the simulation was carried on until t(g/d)1/2 ≈ 200.
The initiation time likely also depends on the number of bubbles in the numerical
simulation or experimental set-up. For example, if a large number of simulations
with different initial conditions were carried out for Nb = 27 and 216, it is likely
that the streaming would, on average, start earlier for Nb = 216 than for Nb = 27,
because of the larger number of bubble pairs. (iii) Once the stream has formed, is it
a permanent feature or can it break up? We observed in figures 2(a) and 29(a) that
some bubbles moved away from the stream. If the void fraction is very low and the
bubbles disperse too widely to be recaptured, a possible scenario could be that the
stream disappears, as Stewart (1995) sometimes observed in experiments. (iv) What
are the limiting values of the rise velocity, Reynolds stresses and other quantities?
(v) What is the threshold value of Eo, below which streaming is unlikely to occur?
Given the mechanism illustrated in figure 4, it is likely to correspond to the value
for which the lift force changes direction as the deformation of the bubble increases
(Ervin & Tryggvason 1997).

Stewart (1995) examined the interaction of bubbles experimentally, for bubbles
with slightly larger deformations, Eo > 6.0, and Reynolds numbers, Reb > 100, than in
our simulations. He observed that the interaction of two bubbles is characterized by
wake capture followed by collisions. For multiple bubbles, this leads to the formation
of clusters, where bubbles leapfrog each other, in a repeated process of wake capture
and collision similar to what is depicted in figure 15. Although we were not able to
pursue the simulations for a long time after initiation of streaming, animations of
the results for Eo = 5 and α = 2% (results of § 4.6) and 6% (results of § 4.1) clearly
showed occurrences of this leapfrogging process. Stewart noted that the process is
discontinuous if the cluster contains only a small number of bubbles and becomes
approximately continuous if the cluster involves more than about 10 bubbles, in
which case he called the structure formed by the bubbles a ‘chimney.’ Additional
complications arise in the experiments because of breakup and coalescence of the
bubbles, but is appears that these chimneys are essentially the same phenomenon as
the streams observed in our simulations.

The results of § 4.6 strongly suggest that the bubbles shown in §§ 4.2, 4.4 and 4.5 for
Eo= 5 and α = 2% will eventually form a stream as they do for the Eo =5, α =6%
case. The results shown in these sections, where the bubbles are relatively uniformly
distributed, might therefore not apply to large bubble columns where the bubbles
have transitioned into streams. Since transition to streaming apparently does not take
place instantaneously the results would, however, apply to the bubbles in the region
where they formed, such as near injectors or below plunging waves.

5. Conclusion
The motion of buoyant deformable bubbles in a homogeneous flow is studied

by direct numerical simulations, where the effects of viscosity, inertia, interface
deformation and surface tension are all accounted for. The results are compared
with the corresponding results for spherical bubbles. The rise Reynolds number is
17–26, depending on the void fraction, which ranges between 2% and 12%. The
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α (%) Eo 〈Red〉 〈Reb〉 〈W ′
b〉

〈Wb〉
〈(U ′2

b + V ′2
b )1/2〉1/2

〈W ′
b〉

D′
z

a〈Wb〉
(D′

x + D′
y)

a〈Wb〉
Tz〈Wb〉

a

Tx+y〈Wb〉
a

2 1 26.60 27.14 0.0573 0.0240 0.0973 0.0080 29.6 13.8
2 5 25.34 25.84 0.2337 0.0874 2.7380 0.0232 50.2 3.04
6 1 21.95 23.35 0.1493 0.0683 0.1775 0.0152 7.95 3.25
6 5 21.50 22.87 0.3147 0.1583 – – – –

12 1 17.68 20.09 0.2027 0.1273 0.3195 0.2990 9.61 1.84
12 5 18.32 20.82 0.3306 0.2104 1.4410 0.1153 13.2 2.60

Table 3. Transport properties of the bubbles. For Eo = 5, α =2% and Eo= 5, α = 6%, the
results are for the phase before streaming and are therefore not expected to be the steady-state
results. They are given to provide a quick summary of the results. For Eo= 5, α = 6%, it was
not possible to determine the diffusion coefficients and Lagrangian integral time scales beause
of the short amount of time before formation of the stream. For Eo= 5, α = 2%, the amount
of simulation time was sufficient for these quantities to be determined. a is the bubble radius.

aspect ratio of the deformable bubbles is approximately 1.4. The simulations were
performed in a periodic cell including 27 bubbles. The main statistical results are
summarized in table 3. The major observations and conclusions are as follows.

(i) An analysis of the microstructure of the bubble distribution reveals a preference
for pairs of deformable bubbles to be aligned vertically and for pairs of spherical
bubbles to be aligned horizontally. The dynamic interaction process of two bubbles is
dominated by wake effects. A bubble moving in the wake of another bubble is attracted
toward the leading bubble. Because larger amounts of vorticity are generated at the
interface of deformable bubbles, the wake effect is stronger for deformable bubbles
than for spherical bubbles. As a result, two deformable bubbles usually collide and
then rotate about each other, whereas two spherical bubbles usually do not collide.
After rotation, when the two bubbles are aligned side-by-side, they repel.

(ii) For α = 2% and 6%, the stronger wake effect for deformable bubbles leads to
the formation of large-scale flow structures, where the bubbles gather into vertical
columns, which we call streams. While we were not able to determine the final steady-
state properties of the flow after the bubbles form a stream, we did observe a marked
increase in the velocity of the bubbles and the velocity fluctuations of the bubbles and
the liquid. In contrast, spherical bubbles remain distributed throughout the flow field
and their motion remains statistically steady. The difference between the behaviour
of the spherical and deformable bubbles can be explained by considering the lift force
acting on a bubble moving in the wake of another bubble. For spherical bubbles,
the lift force points out of the wake, so that the bubble moves out of the wake. For
deformable bubbles, the lift force points toward the wake, so that the bubble moves
toward the wake, thus reinforcing the stream.

(iii) The deformable bubbles experience much stronger interactions than the
spherical bubbles, and they therefore induce much larger velocity fluctuations in
the liquid. An analysis of the kinetic energy spectra shows that the difference lies
mainly in a larger energy content at wavelengths larger than the bubble diameter,
indicating an inverse energy cascade, where energy is transferred from small scales to
large scales.

(iv) The self-dispersion process of the bubbles can roughly be characterized as
Gaussian when the bubbles are not streaming. The vertical velocity fluctuations and
diffusion coefficients of the bubbles are much larger than their horizontal counterparts.
The anisotropy decreases as the void fraction increases.
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Schlüter, M & Räbiger, N. 1998 Bubble swarm velocity in two-phase flows. HTD-Vol. 361 Proc.
of the ASME Heat Transfer Division, vol. 5, ASME 1998.



118 B. Bunner and G. Tryggvason

Smereka, P. 1993 On the motion of bubbles in a periodic box. J. Fluid Mech. 254, 79–112.

Sokolichin, A., Eigenberger, G., Lapin, A. & Lübbert, A. 1999 Dynamic numerical simulation
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